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Thermal instability of viscoelastic fluids in porous media
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Abstract

A theoretical analysis of thermal instability driven by buoyancy forces is conducted in an initially quiescent, hori-

zontal porous layer saturated by viscoelastic fluids. Modified Darcy�s law is used to explain characteristics of fluid

motion. The linear stability theory is employed to find the critical condition of the onset of convective motion. The

results of the linear stability analysis show that the overstability is a preferred mode for a certain parameter range.

Based on the results of linear stability analysis, a nonlinear stability analysis is conducted. The onset of convection has

the form of a supercritical and stable bifurcation independent of the values of the elastic parameters. The Landau

equations and the Nusselt number variations are derived for steady and oscillatory modes.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The convective motion driven by buoyancy forces

has attracted many researchers� interests. In this con-

nection buoyancy-driven phenomena in porous media

are actively under investigation. It is well known that the

buoyancy-driven convection has a wide variety of engi-

neering applications, such as geothermal reservoirs, ag-

ricultural product storage systems, packed-bed catalytic

reactors, the pollutant transport in underground and the

heat removal of nuclear power plants.

With Newtonian fluid system of slow heating Horton

and Rogers [1] and Lapwood [2] conducted theoretical

analysis on the critical condition of the onset of buoy-

ancy-driven motion in fluid-saturated horizontal porous

layers. Katto and Masuoka [3] showed experimentally

the effect of Darcy number on the onset condition of

buoyancy-driven convection. They employed Darcy�s
law to express the fluid characteristics in porous layers.

In case of Newtonian fluid the stability analysis has been

conducted under the principles of the exchange of sta-
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bilities. However, the viscoelastic fluid like polymeric

liquids can exhibit markedly different stability proper-

ties. For the Rayleigh–Benard problem, Vest and Arpaci

[4], and Koka and Ierley [5] analyzed overstability of

Maxwell fluid and Oldroyd-B fluid, respectively. They

confirmed that the buoyancy forces could induce the

time-periodic instability before the exchange of stabili-

ties.

The nonlinear stability analysis has close relation

with the actual structure of the convection. Malkus and

Veronis [6] conducted a nonlinear stability analysis of

the Rayleigh–Benard problem by employing the power-

series method. Since the nonlinear stability analysis is

thought to be important to understand the structure of

turbulence, it becomes one of the most active research

fields. For the viscoelastic fluid Rosenbalt [7] performed

a nonlinear stability analysis of the Rayleigh–Benard

problem. He treated the bifurcation problem corre-

sponding to the exchange of stabilities and overstability.

In the present study, linear and nonlinear stability

analyses of initially quiescent, horizontal porous layers

which are saturated with viscoelastic fluids are conducted.

The effect of relaxation parameters on the variation of the

Nusselt number with respect to Darcy–Rayleigh number

is also investigated in the neighborhood of the critical

conditions.
ed.
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Nomenclature

a dimensionless wave number

d fluid layer thickness

Da Darcy number, K=d2

g gravitational acceleration

K permeability

Nu Nusselt number, qd=ðkDT Þ
P pressure

Ra Rayleigh number, gbDT d3=ðamÞ
RaD Darcy–Rayleigh number, Ra� Da
T temperature

u velocity vector in Cartesian coordinates

w1 dimensionless vertical velocity disturbance

ðx; y; zÞ dimensionless Cartesian coordinates

Greek symbols

a effective thermal diffusivity

b thermal expansion coefficient

DT temperature difference

e strain retardation time

h1 dimensionless temperature disturbance,

gbd3T1=ðamÞ
k stress relaxation time

l viscosity

m kinematic viscosity

q density

r temporal growth rate

s dimensionless time

v perturbation parameter

w stream function

x dimensionless oscillation frequency

Subscript

c critical conditions

Superscripts

s stationary mode

o oscillatory mode
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2. Linear stability analysis

2.1. Governing equations

The system considered here is an initially quiescent,

fluid-saturated horizontal porous layer of depth ‘‘d’’ as
shown in Fig. 1. The porous medium is homogeneous

and isotropic, and saturated with viscoelastic fluid. The

porous layer is heated slowly from below. Employing

the Boussinesq approximation and the modified Darcy�s
model [8], for this system the governing equations of

flow and temperature fields are expressed as

r � u ¼ 0 ð1Þ

l
K

e
o

ot

�
þ 1

�
u ¼ k

o

ot

�
þ 1

�
ð�rP þ qgÞ ð2Þ

o

ot

�
þ u � r

�
T ¼ ar2T ð3Þ

q ¼ qr 1½ � bðT � TrÞ� ð4Þ
Isothermal

Isothermal
Z

g T d

T0 +∆T

T0

Fig. 1. Schematic diagram of system considered here.
where u is the velocity vector; K, the permeability; l, the
viscosity; e, the strain retardation time; k, the stress re-

laxation time; P , the pressure; T , the temperature; q, the
density; g, the gravitational acceleration; a, the effective

thermal diffusivity and b is the thermal expansion coef-

ficient. The subscript ‘‘r’’ represents the reference state.

The important parameters to describe the present

system are

Da ¼ K
d2

; Ra ¼ gbDT d3

am
; e ¼ ae

d2
and k ¼ ak

d2

ð5Þ

where m denotes the kinematic viscosity and DT the

temperature difference. For Newtonian fluid, the prin-

ciple of exchange of stabilities holds and the critical

condition is well represented by [1,2].

RaD;c ¼ RacDa ¼ 4p2 ð6Þ
2.2. Linear stability equations

Under the linear stability theory the disturbances

caused by the onset of thermal convection can be for-

mulated, in dimensionless form, in terms of the tem-

perature disturbance h1, the vertical velocity disturbance

w1 and time s by decomposing Eqs. (1)–(4).

1

Da
e
o

os

�
þ 1

�
r2w1 ¼ Ra k

o

os

�
þ 1

�
r2

1h1 ð7Þ

oh1
os

� w1 ¼ r2h1 ð8Þ
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wherer2 ¼ o2=ox2 þ o2=oy2 þ o2=oz2 andr2
1 ¼ o2=ox2 þ

o2=oy2. The above equations are nondimensionalized by

using d, d2=a, a=d and DT as the length, time, velocity

and the temperature unit, respectively. The proper

boundary conditions are given by

w1 ¼ h1 ¼ 0 at z ¼ 0 and z ¼ 1 ð9Þ

The boundary conditions represent no flow through the

boundaries and the fixed temperature on both bound-

aries.

According to the normal mode analysis, convective

motion is assumed to exhibit the horizontal periodicity.

Then the perturbed quantities can be expressed as follows:

½w1ðs; x; y; zÞ; h1ðs; x; y; zÞ�
¼ ½w1ðzÞ; h1ðzÞ� exp½iðaxxþ ayyÞ þ rs� ð10Þ

where ‘‘i’’ is the imaginary number and r is the temporal

growth rate. With ReðrÞ > 0 the system will become

unstable. For the Newtonian fluid, the principle of ex-

change of stabilities is satisfied, and therefore the

imaginary part of r is zero at the onset of motion. This

means that the instability sets in as a steady secondary

flow under the principle of exchange of stabilities. Sub-

stituting Eq. (10) into Eqs. (7) and (8) produces the usual

amplitude functions in terms of the horizontal wave

number a ¼ ða2x þ a2yÞ
1=2

.

1

Da
ðerþ 1ÞðD2 � a2Þw1 ¼ �Raðkrþ 1Þa2h1 ð11Þ

rh1 � w1 ¼ ðD2 � a2Þh1 ð12Þ

where ‘‘D’’ is the z-directional differential operator,

D ¼ d=dz. Eqs. (11) and (12) can readily be combined to

yield

ðerþ 1ÞðD2 � a2ÞðD2 � a2 � rÞh1
¼ RaDa2ðkrþ 1Þh1 ð13Þ

And the boundary conditions, Eq. (9), are reduced to

h1 ¼ D2h1 ¼ 0 at z ¼ 0 and z ¼ 1 ð14Þ
2.3. Solution procedure and results

Examination of the boundary conditions, Eq. (14),

and the stability equation, Eq. (13), shows that the re-

quired solution is

h1 ¼ An sin npz ðn ¼ 1; 2; 3; . . .Þ ð15Þ

where An is an arbitrary constant. Here, we are inter-

ested in the most dangerous mode, and our consider-

ation is confined to the lowest-order mode, n ¼ 1. The

following characteristic equation for the most dangerous

mode can be obtained by substituting Eq. (15) into Eq.

(13).
ðerþ 1Þp4 þ ðerþ 1Þð2a2 þ rÞp2 þ ðerþ 1Þða4 þ a2rÞ
� RaDa2ðkrþ 1Þ ¼ 0 ð16Þ

This equation can be rearranged as

r2fep2 þ a2eg þ rfep4 þ p2 þ 2a2p2eþ a2 þ a4e

� RaDa2kg þ fp4 þ 2a2p2 þ a4 � RaDa2g ¼ 0 ð17Þ

which may be expressed symbolically as

Ar2 þ Brþ C ¼ 0 ð18Þ

From the elementary theory of algebraic equation,

Eq. (18) may admit essentially two solutions, depending

on whether the instability is steady or oscillatory. In

steady (i.e. exchange of stabilities) case, we have r ¼ 0 at

the critical condition. In this case the condition for the

Darcy–Rayleigh number at which marginally stable

steady mode exists can be obtained as

RaD ¼ p4 þ 2a2p2 þ a4

a2
ð19Þ

The critical wave number obtained by minimizing RaD
with respect to a, i.e. satisfying oRaD=oa ¼ 0, is

ac ¼ p ð20Þ

And, the corresponding critical Darcy–Rayleigh number

for the steady case is

RasD;c ¼ 4p2 ð21Þ

The above results are independent of relaxation para-

meters and identical with those of Newtonian problem

[1,2].

If ImðrÞ 6¼ 0 as ReðrÞ ! 0 for a disturbances, oscil-

latory instability which is sometimes called overstability

sets in. For the case of oscillatory mode (i.e. oversta-

bility), it can be shown easily that a neutral overstability

mode (i.e. r ¼ iri) occurs if

B ¼ 0 and AC > 0 ð22Þ

From the first relation, the condition for the Darcy–

Rayleigh number at which marginally stable oscillatory

mode exists can be obtained as

RaD ¼ ep4 þ p2 þ 2a2p2eþ a2 þ a4e
a2k

ð23Þ

The critical wave number showing minimum RaD is

a2c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þ p2=e

p
ð24Þ

It is interesting that the critical wave number is inde-

pendent of k. And, the corresponding critical Darcy–

Rayleigh number for the oscillatory case is

RaoD;c ¼
2ep4 þ 2p2 þ 2p2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þ p2=e

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þ p2=e

p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þ p2=e

p
ð25Þ
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From the second relation of Eq. (22) the overstability

can occur for a particular wave number a only if the

following inequality is satisfied.

ðk� eÞ > 1

p2 þ a2
ð26Þ

The dimensionless frequency of the neutral oscillatory

mode is

r2
i ¼ x2 ¼ ðp2 þ a2Þðk� eÞ � 1

ek
ð27Þ

For k ¼ 0:5, the neutral stability curves are obtained as a

function of e as shown in Fig. 2. On each curve, the

minimum for RaD will be the critical Darcy–Rayleigh

number to mark the onset of convection. It is interesting

that the neutral stability curve for e ¼ 0:45 is merged

into the Newtonian case at the small wave number re-

gion. This means that Eq. (26) is an important criterion

whether the convective motion shows overstability

characteristics at a particular wave number. Eq. (26)

reveals that overstability is likelier to occur as k , which

is related with the elasticity of fluid, increases and as e,
related with the viscous damping, decreases. The critical

Darcy–Rayleigh number, RaD;c and the dimensionless

frequency of neutral oscillatory mode, x2 in the e–k
plane are given in Figs. 3 and 4. These figures show that

the critical Darcy–Rayleigh numbers in the region of

overstability is always smaller than those in the region of

exchange of stabilities and the oscillation frequency de-

creases with increasing k for a fixed e.
3. Bifurcation of steady solutions

The linear stability theory gives us the critical Darcy–

Rayleigh number, but does not predict the amplitude of

convective motion. Here we use the perturbation meth-

od to find the bifurcation from the basic state at the
value of RaD ¼ RasD;c. The results of this section have

physical meaning only when the inequality of Eq. (26)

does not hold. In the Rayleigh–Benard problem the

convection cell takes the form of two-dimensional roll

near the critical condition, so we simplify the three-

dimensional problem to two-dimensional problem.

Then, the velocity vector has only two components as

follows:

~uu ¼~uuðx; z; tÞ ¼ ½uðx; z; tÞ; 0;wðx; z; tÞ� ð28Þ

Using the continuity equation, the x- and z-direction
velocities can be represented in terms of stream function

wðx; z; tÞ as

u ¼ ow
oz

and w ¼ � ow
ox

ð29Þ
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The governing equations for two-dimensional flow and

temperature fields including nonlinear terms may be

expressed as follows:

e
o

os

�
þ 1

�
D2w ¼ �RaD k

o

os

�
þ 1

�
oh
ox

ð30Þ

oh
os

þ ow
ox

� D2h ¼ G ð31Þ

G ¼ ow
ox

oh
oz

� ow
oz

oh
ox

ð32Þ

with the following boundary conditions

w ¼ h ¼ 0 at z ¼ 0 and z ¼ 1 ð33Þ

where D2 ¼ o2=oz2 þ o2=ox2.
Introducing a small perturbation parameter v that

indicates deviation from the critical state, the variables

for a weak nonlinear state may be expanded as power

series of v [7].

RaD ¼ RaD;c þ v2RaD;2 þ � � �
h ¼ vh1 þ v2h2 þ v3h3 þ � � �
w ¼ vw1 þ v2w2 þ v3w3 þ � � �

ð34Þ

The scaling for the time variable s is such that

o=os ¼ v2o=os. RaD;1 in Eq. (34) is eliminated a priori,

since it becomes zero due to the symmetry when the

solvability condition is imposed. And, also h0w0 are

eliminated, because the zeroth order solutions of tem-

perature and velocity fields are h0 ¼ 1� z and w0 ¼ 0,

which are considered in Eqs. (8) and (31), already. In the

present case, RaD;c ¼ RasD;c and RaD;2 > 0 corresponds to

the supercritical condition while RaD;2 < 0 represent the

subcritical condition.

In the first order problem, that is the linear stability

problem whose solution is an eigen-function with un-

determined amplitudes, G1 ¼ 0. The first order solution

corresponding to RaD ¼ RasD;c is

h1 ¼ A1 cos ax sinpz and w1 ¼ B1 sin ax sin pz ð35Þ

The undetermined amplitudes are related by

A1 ¼ � a
c
B1 ð36Þ

where c ¼ ðp2 þ a2Þ.
In the second order problem G2 ¼ ð1=2ÞA1B1ap�

sin 2pz. The second order problem is reduced as follows:

D2w2 ¼ �RaD
ow2

ox
ð37Þ

ow2

ox
� D2h2 ¼

1

2
A1B1ap sin 2pz ð38Þ

The solution is

h2 ¼
a
8p

A1B1 sin 2pz and w2 ¼ 0 ð39Þ
The nonlinear term of the third order problem is

G3 ¼ � a2

8
A1B2

1 cos ax sinpzþ
a2

8
A1B2

1 cos ax sin 3pz

ð40Þ

And, the third order problem is reduced to

e
o

os
D2w1 þ D2w3 ¼ �RaDk

o

os
oh1
ox

� RaD
oh3
ox

� RaD;2

oh1
ox
ð41Þ

oh1
os

þ ow3

ox
� D2h3 ¼ � a2

8
A1B2

1 cos ax sin pz

þ a2

8
A1B2

1 cos ax sin 3pz ð42Þ

The solution has the following form

h3 ¼ A3 cos ax sin pzþ � � � and

w3 ¼ B3 sin ax sin pzþ � � � ð43Þ

The solvability condition that guarantees the existence

of a solution for the third order equation requires the

solution of the homogeneous part of the third order

equation must be orthogonal to the inhomogeneous part

of it. This yields the following Landau equation that

describes the temporal variation of the amplitude A1 of

the convection cell:

c
oA1

os
¼ a2

c
RaD;2A1 � kA3

1 ð44Þ

where c ¼ ð1þ ec� ka2RasD;c=cÞ and k ¼ c2=8.
Steady state amplitude exists in the following form,

when RaD is lager than RasD;c (i.e. RaD;2 > 0):

A2
1 ¼

8a2

c3
RaD;2 ð45Þ

The Nusselt number is represented by using Eq. (33) as

follows:

Nu ¼ 1þ 2a2

c2
ðRaD � RasD;cÞ ð46Þ

By substituting the critical condition into the above

equation, the following relation can be obtained.

Nu ¼ 1þ 1

2p2
ðRaD � 4p2Þ ð47Þ

This relation is identical to that of Newtonian case [9].
4. Bifurcation of periodic solutions

A slight modification of the methods applied in the

previous section can be used to determine the bifurca-

tion of the basic state at the value of RaD ¼ RaoD;c. The

results of this section have the physical meaning only

when the inequality of Eq. (26) holds. As in the previous
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section, we simplify the three-dimensional problem to

the two-dimensional one, and introduce the expressions

of Eqs. (28) and (29) for the velocity field. Then, we can

obtain the system of equations of Eqs. (30)–(33). In

order to allow for the anticipated frequency shift along

the bifurcation solution, we introduce the fast time scale

of s and the slow time scale of s. Therefore, the scaling of
time variable is such that o=os ¼ o=osþ v2o=os.

In the first order problem G1 ¼ 0. Therefore, the first

order problem reduces to the linear stability problem for

overstability. The first order solution corresponding to

RaD ¼ RaoD;c is

h1 ¼ fA1ðsÞeixs þ A1ðsÞe�ixsg cos ax sinpz ð48Þ

w1 ¼ fB1ðsÞeixs þ B1ðsÞe�ixsg sin ax sinpz ð49Þ

where the overbar denotes complex conjugate, x and a
are taken to the critical values associated with

RaD ¼ RaoD;c. The undetermined amplitudes are func-

tions of the slow time scale, and are related by

B1 ¼ � cþ ix
a

A1 ð50Þ

In the second order problem the nonlinear term G2 is

expressed as

G2 ¼
1

2
pafA1B1e

2ixs þ A1B1e
�2ixs þ A1B1 þ A1B1g

� sin 2pz ð51Þ

From the above relation, we can deduce that velocity

and temperature fields have the terms having frequency

2x and independent of the fast time scale. Thus we can

express the second order temperature term as follows:

h2 ¼ fh20 þ h22e
2ixs þ h22e

�2ixsg sin 2pz ð52Þ

where h22 and h20 are temperature fields have the terms

having frequency 2x and independent of the fast time

scale, respectively. The second order problem is reduced

as

e
o

os

�
þ 1

�
D2w2 ¼ �RaoD;c k

o

os

�
þ 1

�
oh2
ox

ð53Þ

oh2
os

þ ow2

ox
� D2h2 ¼ G2 ð54Þ

And, the solutions of the second order problem are

h20 ¼
a
8p

fA1B1 þ A1B1g; w20 ¼ 0 ð55Þ

and

h22 ¼
paA1B1

ð8p2 þ 4ixÞ ; w22 ¼ 0 ð56Þ

In the third order problem the nonlinear term G3 is

expressed as:
G3 ¼ �p2a2
ðA1B1 þ A1B1ÞB1

8p2

�
þ A1B1B1

8p2 þ 4ix

�
� fcos ax sin pz� cos ax sin 3pzg ð57Þ

Therefore, the third order problem has the solution of

the following forms:

h3 ¼ A3e
ixs cos ax sin pzþ � � � ð58Þ

w3 ¼ B3e
ixs sin ax sin pzþ � � � ð59Þ

And, the third order problem is reduced as:

e
o

os

�
þ 1

�
D2w3 þ e

o

os
D2w1

¼ �RaoD;c k
o

os

�
þ 1

�
oh3
ox

� RaoD;ck
o

os
oh1
ox

� �

� RaD;2

oh1
ox

ð60Þ

oh1
os

þ oh3
os

þ ow3

ox
� D2h3

¼ �p2a2
ðA1B1 þ A1B1ÞB1

8p2

�
þ A1B1B1

8p2 þ 4i-

�
ð61Þ

Under the stability conditions of Eqs. (24)–(27), these

equations yield the following Landau equation that

describes the temporal variation of the amplitude A1 of

the convection cell:

c
oA1

os
¼ a2

ð1þ ixeÞc RaD;2A1 � kjA1j2A1 ð62aÞ

where

c ¼ f1þ eðcþ ixÞ � RaoD;cka
2=cg=ð1þ ixeÞ ð62bÞ

and

k ¼ p2fðc2 þ x2Þ=8p2 þ ðcþ ixÞ2=8p2

þ ðc2 þ x2Þ=ð8p2 þ 4ixÞg ð62cÞ

From the above, the following relations can be obtained

ojA1j2

os
¼ 2prjA1j2 � 2lrjA1j4 ð63Þ

oðphðA1ÞÞ
os

¼ pi � lijA1j2 ð64Þ

where fa2=ð1þ ixeÞcgRaD;2c�1 ¼ pr þ ipi, c�1k ¼ lr þ ili
and phð�Þ represents the phase shift. The temporal evo-

lution of jA1j can be expressed as a function of initial

amplitude A0 [10]:

jA1j2 ¼
A2
0

ðlr=prÞA2
0 þ ½1� ðlr=prÞA2

0� expð�2prsÞ
ð65Þ

For the case of lr > 0 and RaD > RaD;c, i.e. pr > 0 , the

above solution gives jA1j � A0 expðprsÞ as s ! �1 and

jA1j ! 0, just as in the linear theory, but
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jA1j !
ffiffiffiffi
pr
lr

r
as s ! þ1; ð66Þ

whatever the value of A0. This is called supercritical

stability, the base system being linearly unstable for

RaD > RaD;c but settling down as a new laminar flow.

The steady state amplitude exists in the following form,

when RaD;2 takes positive value

jA1j2 ¼
pr
lr

¼ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16p4 þ 16x2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð24p2c2 þ 8p2x2 � 8x2cÞ2 þ ð16p2xcþ 8xc2Þ2

q
� RaD;2 ð67Þ

TheNusselt number is represented by using Eq. (33) as

Nu ¼ 1� v2
dh2
dz

����
z¼0

ð68Þ

By assembling Eqs. (52), (67) and (68) the area-averaged

Nusselt number can be represented as

Nu ¼ 1� v22pfh20 þ ðh22 þ h22Þ cos 2xs
þ ðh22 � h22Þi sin2xsg ð69Þ

From the above equation the time- and area-averaged

Nusselt number is expressed as follows:

Nu¼ 1þ v2
c
2

(
þ 2p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þx2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64p4 þ 16x2

p
)
jA1j2

¼ 1þ c
2

(
þ 2p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þx2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64p4 þ 16x2

p
)

RaD �RaoD;c

RaD;2

� �
jA1j2

ð70Þ

The effects of elastic parameters on the heat transfer

characteristics are summarized in Figs. 5 and 6. As
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Fig. 5. The effect of relaxation parameter on the area- and

time-averaged Nusselt number.
shown in these figures, the heat transfer rate increases

with increasing the relaxation parameter and decreasing

the retardation parameter and the slope of Nu vs. RaD is

nearly constant regardless of the relaxation parameter

and the retardation parameters. In the exchange of

stabilities regime, the heat transfer characteristics are

identical with those of Newtonian case.
5. Conclusions

The onset of buoyancy-driven motion in a horizontal

porous layer saturated with viscoelastic fluid has been

analyzed analytically by using linear and nonlinear sta-

bility theory. It is known that elasticity parameters are

destabilizing factor and for a certain parameter range

the overstability is a preferred mode. From the results of

a bifurcation study, it can be known that the bifurcation

of the present problem is supercritical and stable. The

results of the present study, i.e. the critical Darcy–

Rayleigh number, oscillation frequency and the heat

transfer characteristics can be used to determine the

elastic parameters of the non-Newtonian fluids in the

porous media.
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